Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Orphanet J Rare Dis ; 19(1): 62, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38347616

RESUMO

BACKGROUND: In 2017, the German Academy for Rare Neurological Diseases (Deutsche Akademie für Seltene Neurologische Erkrankungen; DASNE) was founded to pave the way for an optimized personalized management of patients with rare neurological diseases (RND) in all age groups. Since then a dynamic national network for rare neurological disorders has been established comprising renowned experts in neurology, pediatric neurology, (neuro-) genetics and neuroradiology. DASNE has successfully implemented case presentations and multidisciplinary discussions both at yearly symposia and monthly virtual case conferences, as well as further educational activities covering a broad spectrum of interdisciplinary expertise associated with RND. Here, we present recommendation statements for optimized personalized management of patients with RND, which have been developed and reviewed in a structured Delphi process by a group of experts. METHODS: An interdisciplinary group of 37 RND experts comprising DASNE experts, patient representatives, as well as healthcare professionals and managers was involved in the Delphi process. First, an online collection was performed of topics considered relevant for optimal patient care by the expert group. Second, a two-step Delphi process was carried out to rank the importance of the selected topics. Small interdisciplinary working groups then drafted recommendations. In two consensus meetings and one online review round these recommendations were finally consented. RESULTS: 38 statements were consented and grouped into 11 topics: health care structure, core neurological expertise and core mission, interdisciplinary team composition, diagnostics, continuous care and therapy development, case conferences, exchange / cooperation between Centers for Rare Diseases and other healthcare partners, patient advocacy group, databases, translation and health policy. CONCLUSIONS: This German interdisciplinary Delphi expert panel developed consented recommendations for optimal care of patients with RND in a structured Delphi process. These represent a basis for further developments and adjustments in the health care system to improve care for patients with RND and their families.


Assuntos
Doenças do Sistema Nervoso , Neurologia , Criança , Humanos , Doenças Raras/terapia , Atenção à Saúde , Doenças do Sistema Nervoso/diagnóstico , Doenças do Sistema Nervoso/terapia , Consenso
2.
Genet Med ; 26(2): 101013, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37924258

RESUMO

PURPOSE: RNF213, encoding a giant E3 ubiquitin ligase, has been recognized for its role as a key susceptibility gene for moyamoya disease. Case reports have also implicated specific variants in RNF213 with an early-onset form of moyamoya disease with full penetrance. We aimed to expand the phenotypic spectrum of monogenic RNF213-related disease and to evaluate genotype-phenotype correlations. METHODS: Patients were identified through reanalysis of exome sequencing data of an unselected cohort of unsolved pediatric cases and through GeneMatcher or ClinVar. Functional characterization was done by proteomics analysis and oxidative phosphorylation enzyme activities using patient-derived fibroblasts. RESULTS: We identified 14 individuals from 13 unrelated families with (de novo) missense variants in RNF213 clustering within or around the Really Interesting New Gene (RING) domain. Individuals presented either with early-onset stroke (n = 11) or with Leigh syndrome (n = 3). No genotype-phenotype correlation could be established. Proteomics using patient-derived fibroblasts revealed no significant differences between clinical subgroups. 3D modeling revealed a clustering of missense variants in the tertiary structure of RNF213 potentially affecting zinc-binding suggesting a gain-of-function or dominant negative effect. CONCLUSION: De novo missense variants in RNF213 clustering in the E3 RING or other regions affecting zinc-binding lead to an early-onset syndrome characterized by stroke or Leigh syndrome.


Assuntos
Doença de Leigh , Doença de Moyamoya , Acidente Vascular Cerebral , Humanos , Criança , Doença de Moyamoya/genética , Doença de Leigh/complicações , Fatores de Transcrição/genética , Ubiquitina-Proteína Ligases/genética , Zinco , Predisposição Genética para Doença , Adenosina Trifosfatases/genética
3.
Am J Hum Genet ; 110(7): 1068-1085, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37352860

RESUMO

ERI1 is a 3'-to-5' exoribonuclease involved in RNA metabolic pathways including 5.8S rRNA processing and turnover of histone mRNAs. Its biological and medical significance remain unclear. Here, we uncover a phenotypic dichotomy associated with bi-allelic ERI1 variants by reporting eight affected individuals from seven unrelated families. A severe spondyloepimetaphyseal dysplasia (SEMD) was identified in five affected individuals with missense variants but not in those with bi-allelic null variants, who showed mild intellectual disability and digital anomalies. The ERI1 missense variants cause a loss of the exoribonuclease activity, leading to defective trimming of the 5.8S rRNA 3' end and a decreased degradation of replication-dependent histone mRNAs. Affected-individual-derived induced pluripotent stem cells (iPSCs) showed impaired in vitro chondrogenesis with downregulation of genes regulating skeletal patterning. Our study establishes an entity previously unreported in OMIM and provides a model showing a more severe effect of missense alleles than null alleles within recessive genotypes, suggesting a key role of ERI1-mediated RNA metabolism in human skeletal patterning and chondrogenesis.


Assuntos
Exorribonucleases , Histonas , Humanos , Exorribonucleases/genética , Histonas/genética , Mutação de Sentido Incorreto/genética , RNA Ribossômico 5,8S , RNA , RNA Mensageiro/genética
4.
Eur J Med Genet ; 66(7): 104774, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37120078

RESUMO

In this study, we aimed to examine the diagnostic yield achieved by applying a trio approach in exome sequencing (ES) and the interdependency between the clinical specificity in families with neurodevelopmental delay. Thirty-seven families were recruited and trio-ES as well as three criteria for estimating the clinical phenotypic specificity were suggested and applied to the underaged children. All our patients showed neurodevelopmental delay and most of them a large spectrum of congenital anomalies. Applying the pathogenicity guidelines of the American College of Medical Genetics (ACMG), likely pathogenic (29.7%) and pathogenic variants (8.1%) were found in 40,5% of our index patients. Additionally, we found four variants of uncertain significance (VUS; according to ACMG) and two genes of interest (GOI; going beyond ACMG classification) (GLRA4, NRXN2). Spastic Paraplegia 4 (SPG4) caused by a formerly known SPAST variant was diagnosed in a patient with a complex phenotype, in whom a second genetic disorder may be present. A potential pathogenic variant linked to severe intellectual disability in GLRA4 requires further investigation. No interdependency between the diagnostic yield and the clinical specificity of the phenotypes could be observed. In consequence, trio-ES should be used early in the diagnostic process, independently from the specificity of the patient.


Assuntos
Deficiência Intelectual , Humanos , Sequenciamento do Exoma , Fenótipo , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Espastina/genética
5.
Hum Mutat ; 43(10): 1454-1471, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35790048

RESUMO

Aminoacylation of transfer RNA (tRNA) is a key step in protein biosynthesis, carried out by highly specific aminoacyl-tRNA synthetases (ARSs). ARSs have been implicated in autosomal dominant and autosomal recessive human disorders. Autosomal dominant variants in tryptophanyl-tRNA synthetase 1 (WARS1) are known to cause distal hereditary motor neuropathy and Charcot-Marie-Tooth disease, but a recessively inherited phenotype is yet to be clearly defined. Seryl-tRNA synthetase 1 (SARS1) has rarely been implicated in an autosomal recessive developmental disorder. Here, we report five individuals with biallelic missense variants in WARS1 or SARS1, who presented with an overlapping phenotype of microcephaly, developmental delay, intellectual disability, and brain anomalies. Structural mapping showed that the SARS1 variant is located directly within the enzyme's active site, most likely diminishing activity, while the WARS1 variant is located in the N-terminal domain. We further characterize the identified WARS1 variant by showing that it negatively impacts protein abundance and is unable to rescue the phenotype of a CRISPR/Cas9 wars1 knockout zebrafish model. In summary, we describe two overlapping autosomal recessive syndromes caused by variants in WARS1 and SARS1, present functional insights into the pathogenesis of the WARS1-related syndrome and define an emerging disease spectrum: ARS-related developmental disorders with or without microcephaly.


Assuntos
Aminoacil-tRNA Sintetases , Doença de Charcot-Marie-Tooth , Microcefalia , Triptofano-tRNA Ligase , Animais , Humanos , Aminoacil-tRNA Sintetases/genética , Doença de Charcot-Marie-Tooth/genética , Ligases , Microcefalia/genética , Microcefalia/patologia , RNA de Transferência , Triptofano-tRNA Ligase/genética , Peixe-Zebra/genética
6.
Genet Med ; 24(6): 1283-1296, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35346573

RESUMO

PURPOSE: Common diagnostic next-generation sequencing strategies are not optimized to identify inherited variants in genes associated with dominant neurodevelopmental disorders as causal when the transmitting parent is clinically unaffected, leaving a significant number of cases with neurodevelopmental disorders undiagnosed. METHODS: We characterized 21 families with inherited heterozygous missense or protein-truncating variants in CHD3, a gene in which de novo variants cause Snijders Blok-Campeau syndrome. RESULTS: Computational facial and Human Phenotype Ontology-based comparisons showed that the phenotype of probands with inherited CHD3 variants overlaps with the phenotype previously associated with de novo CHD3 variants, whereas heterozygote parents are mildly or not affected, suggesting variable expressivity. In addition, similarly reduced expression levels of CHD3 protein in cells of an affected proband and of healthy family members with a CHD3 protein-truncating variant suggested that compensation of expression from the wild-type allele is unlikely to be an underlying mechanism. Notably, most inherited CHD3 variants were maternally transmitted. CONCLUSION: Our results point to a significant role of inherited variation in Snijders Blok-Campeau syndrome, a finding that is critical for correct variant interpretation and genetic counseling and warrants further investigation toward understanding the broader contributions of such variation to the landscape of human disease.


Assuntos
DNA Helicases , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase , Transtornos do Neurodesenvolvimento , DNA Helicases/genética , Heterozigoto , Humanos , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Síndrome
7.
Eur J Hum Genet ; 30(1): 126-132, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33785884

RESUMO

Here we report for the first time on the maternal transmission of mild Coffin-Siris syndrome (CSS) caused by a SOX11 missense variant. We present two sisters with intellectual disability and muscular hypotonia born to non-consanguineous parents. Cogan ocular motor apraxia was present in both sisters. Body measurements were in a normal range. The mother and both daughters showed hypoplastic nails of the fifth toes. A missense variant in SOX11 [c.139 G > A; p.(Gly47Ser)] in both sisters and their mother was identified. Since 2014, variants in SOX11 are known to cause mild CSS. Most described patients showed intellectual disability, especially concerning acquired language. All of them had hypoplastic nails of the fifth toes. It is of note, that some of these patients show Cogan ocular motor apraxia. The facial dysmorphic features seem not to be specific. We suggest that the combination of Cogan ocular motor apraxia, hypoplastic nails of fifth toes, and developmental delay give the important diagnostic clue for a variant in the SOX11 gene (OMIM 615866, MR 27).


Assuntos
Anormalidades Múltiplas/genética , Face/anormalidades , Deformidades Congênitas da Mão/genética , Deficiência Intelectual/genética , Micrognatismo/genética , Pescoço/anormalidades , Fatores de Transcrição SOXC/genética , Anormalidades Múltiplas/patologia , Adulto , Criança , Face/patologia , Feminino , Deformidades Congênitas da Mão/patologia , Humanos , Deficiência Intelectual/patologia , Micrognatismo/patologia , Mutação de Sentido Incorreto , Pescoço/patologia , Linhagem , Fenótipo
8.
Clin Genet ; 100(2): 187-200, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33955014

RESUMO

Mutations affecting the transcriptional regulator Ankyrin Repeat Domain 11 (ANKRD11) are mainly associated with the multisystem developmental disorder known as KBG syndrome, but have also been identified in individuals with Cornelia de Lange syndrome (CdLS) and other developmental disorders caused by variants affecting different chromatin regulators. The extensive functional overlap of these proteins results in shared phenotypical features, which complicate the assessment of the clinical diagnosis. Additionally, re-evaluation of individuals at a later age occasionally reveals that the initial phenotype has evolved toward clinical features more reminiscent of a developmental disorder different from the one that was initially diagnosed. For this reason, variants in ANKRD11 can be ascribed to a broader class of disorders that fall within the category of the so-called chromatinopathies. In this work, we report on the clinical characterization of 23 individuals with variants in ANKRD11. The subjects present primarily with developmental delay, intellectual disability and dysmorphic features, and all but two received an initial clinical diagnosis of either KBG syndrome or CdLS. The number and the severity of the clinical signs are overlapping but variable and result in a broad spectrum of phenotypes, which could be partially accounted for by the presence of additional molecular diagnoses and distinct pathogenic mechanisms.


Assuntos
Anormalidades Múltiplas/etiologia , Doenças do Desenvolvimento Ósseo/etiologia , Deficiência Intelectual/etiologia , Proteínas Repressoras/genética , Anormalidades Dentárias/etiologia , Anormalidades Múltiplas/genética , Adolescente , Doenças do Desenvolvimento Ósseo/genética , Criança , Pré-Escolar , Face/anormalidades , Facies , Feminino , Humanos , Deficiência Intelectual/genética , Masculino , Mutação , Linhagem , Anormalidades Dentárias/genética , Adulto Jovem
9.
Genet Med ; 23(8): 1551-1568, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33875846

RESUMO

PURPOSE: Within this study, we aimed to discover novel gene-disease associations in patients with no genetic diagnosis after exome/genome sequencing (ES/GS). METHODS: We followed two approaches: (1) a patient-centered approach, which after routine diagnostic analysis systematically interrogates variants in genes not yet associated to human diseases; and (2) a gene variant centered approach. For the latter, we focused on de novo variants in patients that presented with neurodevelopmental delay (NDD) and/or intellectual disability (ID), which are the most common reasons for genetic testing referrals. Gene-disease association was assessed using our data repository that combines ES/GS data and Human Phenotype Ontology terms from over 33,000 patients. RESULTS: We propose six novel gene-disease associations based on 38 patients with variants in the BLOC1S1, IPO8, MMP15, PLK1, RAP1GDS1, and ZNF699 genes. Furthermore, our results support causality of 31 additional candidate genes that had little published evidence and no registered OMIM phenotype (56 patients). The phenotypes included syndromic/nonsyndromic NDD/ID, oral-facial-digital syndrome, cardiomyopathies, malformation syndrome, short stature, skeletal dysplasia, and ciliary dyskinesia. CONCLUSION: Our results demonstrate the value of data repositories which combine clinical and genetic data for discovering and confirming gene-disease associations. Genetic laboratories should be encouraged to pursue such analyses for the benefit of undiagnosed patients and their families.


Assuntos
Exoma , Deficiência Intelectual , Sequência de Bases , Exoma/genética , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Proteínas do Tecido Nervoso , Fenótipo , Sequenciamento do Exoma
10.
Clin Genet ; 98(4): 418-419, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33294970

RESUMO

The clinical impact of duplications affecting the 11p15.5 region is difficult to predict, and depends on the parent-of-origin of the affected allele as well as on the type (deletion, duplication), the extent and genomic content of the variant. Three unrelated families with inheritance of duplications affecting the IC1 region in 11p15.5 through two generations but different phenotypes (Beckwith-Wiedemann and Silver-Russell syndromes, normal phenotype) are reported. The inconsistent phenotypic patterns of carriers of the same variant strongly indicate the impact of cis- and/or trans-acting modifiers on the clinical outcome of IC1 duplication carriers.


Assuntos
Síndrome de Beckwith-Wiedemann/genética , Predisposição Genética para Doença , Fator de Crescimento Insulin-Like II/genética , RNA Longo não Codificante/genética , Síndrome de Silver-Russell/genética , Alelos , Síndrome de Beckwith-Wiedemann/patologia , Criança , Pré-Escolar , Deleção Cromossômica , Duplicação Cromossômica/genética , Cromossomos Humanos Par 11/genética , Feminino , Impressão Genômica/genética , Humanos , Lactente , Recém-Nascido , Masculino , Fenótipo , Síndrome de Silver-Russell/diagnóstico , Síndrome de Silver-Russell/patologia
11.
Parkinsonism Relat Disord ; 77: 70-75, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32629324

RESUMO

INTRODUCTION: The gene encoding myelin-associated glycoprotein (MAG) has been implicated in autosomal-recessive spastic paraplegia type 75. To date, only four families with biallelic missense variants in MAG have been reported. The genotypic and phenotypic spectrum of MAG-associated disease awaits further elucidation. METHODS: Four unrelated patients with complex neurologic conditions underwent whole-exome sequencing within research or diagnostic settings. Following determination of the underlying genetic defects, in-depth phenotyping and literature review were performed. RESULTS: In all case subjects, we detected ultra-rare homozygous or compound heterozygous variants in MAG. The observed nonsense (c.693C > A [p.Tyr231*], c.980G > A [p.Trp327*], c.1126C > T [p.Gln376*], and 1522C > T [p.Arg508*]) and frameshift (c.517_521dupAGCTG [p.Trp174*]) alleles were predicted to result in premature termination of protein translation. Affected patients presented with variable combinations of psychomotor delay, ataxia, eye movement abnormalities, spasticity, dystonia, and neuropathic symptoms. Cerebellar signs, nystagmus, and pyramidal tract dysfunction emerged as unifying features in the majority of MAG-mutated individuals identified to date. CONCLUSIONS: Our study is the first to describe biallelic null variants in MAG, confirming that loss of myelin-associated glycoprotein causes severe infancy-onset disease with central and peripheral nervous system involvement.


Assuntos
Distonia/genética , Distúrbios Distônicos/genética , Deficiência Intelectual/genética , Espasticidade Muscular/genética , Glicoproteína Associada a Mielina/genética , Atrofia Óptica/genética , Ataxias Espinocerebelares/genética , Adulto , Ataxia Cerebelar/genética , Criança , Pré-Escolar , Feminino , Genótipo , Humanos , Masculino , Mutação/genética , Linhagem , Paraplegia Espástica Hereditária/genética
12.
Clin Transl Allergy ; 9: 9, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30809376

RESUMO

Hereditary angioedema (HAE) is a life-threatening disease characterized by recurrent episodes of subcutaneous and mucosal swellings and abdominal cramping. Corticosteroids and antihistamines, which are usually beneficial in histamine-induced acquired angioedema, are not effective in HAE. Therefore, diagnosing HAE correctly is crucial for affected patients. We report a family from Northern Germany with six individuals suffering from recurrent swellings, indicating HAE. Laboratory tests and genetic diagnostics of the genes SERPING1, encoding C1 esterase inhibitor (C1-INH), and F12, encoding coagulation factor XII, were unremarkable. In three affected and one yet unaffected member of the family, we were then able to identify the c.988A > G (also termed c.1100A > G) mutation in the plasminogen (PLG) gene, which has recently been described in several families with HAE. This mutation leads to a missense mutation with an amino acid exchange p.Lys330Glu in the kringle 3 domain of plasminogen. There was no direct relationship between the earlier described cases with this mutation and the family we report here. In all affected members of the family, the symptoms manifested in adulthood, with swellings of the face, tongue and larynx, including a fatal case of a 19 year-old female individual. The frequency of the attacks was variable, ranging between once per year to once a month. In one individual, we also found decreased serum levels of plasminogen as well as coagulation factor XII. As previously reported in patients with PLG defects, icatibant proved to be very effective in controlling acute attacks, indicating an involvement of bradykinin in the pathogenesis.

13.
J Hum Genet ; 63(9): 997-1001, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29899504

RESUMO

Approximately 1-3% of children have intellectual disability or global developmental delay. Heterozygous mutations have emerged as a major cause of different intellectual disability syndromes. In severely affected patients, reproductive fitness is impaired and mutations have usually arisen de novo. Massive parallel sequencing has been an effective means of diagnosing patients, especially those who carry a de novo mutation. The molecular diagnosis can be a way to shift from a more phenotype-driven management of the clinical signs to a more refined treatment based on genotype. Here, we report a novel dominantly inherited KAT6A missense variant in the C-terminal transactivation domain identified by exome sequencing in a girl and her father. Both had intellectual disability/developmental delay, short stature, microcephaly, and strabismus with the father being mildly affected. We here report the first inherited variant in KAT6A and suggest missense variants in KAT6A to be associated with an inheritable, milder clinical presentation compared to previously reported de novo, truncating mutations in this gene.


Assuntos
Transtornos Cromossômicos/genética , Deficiências do Desenvolvimento/genética , Genes Dominantes , Histona Acetiltransferases/genética , Microcefalia/genética , Mutação de Sentido Incorreto , Criança , Feminino , Humanos
15.
Hum Mol Genet ; 26(6): 1078-1086, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28087732

RESUMO

Global developmental delay (GDD), often accompanied by intellectual disability, seizures and other features is a severe, clinically and genetically highly heterogeneous childhood-onset disorder. In cases where genetic causes have been identified, de novo mutations in neuronally expressed genes are a common scenario. These mutations can be best identified by exome sequencing of parent-offspring trios. De novo mutations in the guanine nucleotide-binding protein, beta 1 (GNB1) gene, encoding the Gß1 subunit of heterotrimeric G proteins, have recently been identified as a novel genetic cause of GDD. Using exome sequencing, we identified 14 different novel variants (2 splice site, 2 frameshift and 10 missense changes) in GNB1 in 16 pediatric patients. One mutation (R96L) was recurrently found in three ethnically diverse families with an autosomal dominant mode of inheritance. Ten variants occurred de novo in the patients. Missense changes were functionally tested for their pathogenicity by assaying the impact on complex formation with Gγ and resultant mutant Gßγ with Gα. Signaling properties of G protein complexes carrying mutant Gß1 subunits were further analyzed by their ability to couple to dopamine D1R receptors by real-time bioluminescence resonance energy transfer (BRET) assays. These studies revealed altered functionality of the missense mutations R52G, G64V, A92T, P94S, P96L, A106T and D118G but not for L30F, H91R and K337Q. In conclusion, we demonstrate a pathogenic role of de novo and autosomal dominant mutations in GNB1 as a cause of GDD and provide insights how perturbation in heterotrimeric G protein function contributes to the disease.


Assuntos
Deficiências do Desenvolvimento/genética , Subunidades beta da Proteína de Ligação ao GTP/genética , Mutação de Sentido Incorreto/genética , Neurônios/metabolismo , Criança , Pré-Escolar , Deficiências do Desenvolvimento/metabolismo , Deficiências do Desenvolvimento/patologia , Exoma/genética , Feminino , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Heterotriméricas de Ligação ao GTP/genética , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Humanos , Lactente , Masculino , Neurônios/patologia , Ligação Proteica , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo
16.
Neurology ; 87(1): 77-85, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27281533

RESUMO

OBJECTIVE: To evaluate the phenotypic spectrum associated with mutations in TBC1D24. METHODS: We acquired new clinical, EEG, and neuroimaging data of 11 previously unreported and 37 published patients. TBC1D24 mutations, identified through various sequencing methods, can be found online (http://lovd.nl/TBC1D24). RESULTS: Forty-eight patients were included (28 men, 20 women, average age 21 years) from 30 independent families. Eighteen patients (38%) had myoclonic epilepsies. The other patients carried diagnoses of focal (25%), multifocal (2%), generalized (4%), and unclassified epilepsy (6%), and early-onset epileptic encephalopathy (25%). Most patients had drug-resistant epilepsy. We detail EEG, neuroimaging, developmental, and cognitive features, treatment responsiveness, and physical examination. In silico evaluation revealed 7 different highly conserved motifs, with the most common pathogenic mutation located in the first. Neuronal outgrowth assays showed that some TBC1D24 mutations, associated with the most severe TBC1D24-associated disorders, are not necessarily the most disruptive to this gene function. CONCLUSIONS: TBC1D24-related epilepsy syndromes show marked phenotypic pleiotropy, with multisystem involvement and severity spectrum ranging from isolated deafness (not studied here), benign myoclonic epilepsy restricted to childhood with complete seizure control and normal intellect, to early-onset epileptic encephalopathy with severe developmental delay and early death. There is no distinct correlation with mutation type or location yet, but patterns are emerging. Given the phenotypic breadth observed, TBC1D24 mutation screening is indicated in a wide variety of epilepsies. A TBC1D24 consortium was formed to develop further research on this gene and its associated phenotypes.


Assuntos
Proteínas de Transporte/genética , Epilepsia/genética , Epilepsia/fisiopatologia , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Proteínas de Transporte/metabolismo , Crescimento Celular , Células Cultivadas , Criança , Pré-Escolar , Estudos de Coortes , Eletroencefalografia , Epilepsia/diagnóstico por imagem , Epilepsia/psicologia , Feminino , Proteínas Ativadoras de GTPase , Estudos de Associação Genética , Humanos , Lactente , Masculino , Proteínas de Membrana , Camundongos , Mutação , Proteínas do Tecido Nervoso , Neuritos/fisiologia , Exame Físico , Adulto Jovem
17.
Mol Syndromol ; 5(5): 201-11, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25337067

RESUMO

Fibrodysplasia ossificans progressiva (FOP, MIM 135100) is a rare autosomal dominant genetic disorder and the most disabling condition of heterotopic (extraskeletal) ossification in humans. Mutations in the ACVR1 gene (MIM 102576) were identified as a genetic cause of FOP [Shore et al., 2006]. Most patients with FOP have the same recurrent single nucleotide change c.617G>A, p.R206H in the ACVR1 gene. Furthermore, 11 other mutations in the ACVR1 gene have been described as a cause of FOP. Here, we review phenotypic and molecular findings of 130 cases of FOP reported in the literature from 1982 to April 2014 and discuss possible genotype-phenotype correlations in FOP patients.

18.
Am J Med Genet A ; 164A(8): 1976-80, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24798461

RESUMO

In patients with genetically heterogeneous disorders such as intellectual disability or epilepsy, exome sequencing is a powerful tool to elucidate the underlying genetic cause. Homozygous and compound heterozygous mutations in C12orf57 have recently been described to cause an autosomal recessive syndromic form of intellectual disability, including agenesis/hypoplasia of the corpus callosum, optic coloboma, and intractable seizures. Here, we report on two siblings from nonconsanguineous parents harboring two compound heterozygous loss-of-function mutations in C12orf57 identified by exome sequencing, including a novel nonsense mutation, and review the patients described in the literature.


Assuntos
Anormalidades Congênitas/diagnóstico , Anormalidades Congênitas/genética , Exoma , Heterozigoto , Mutação , Fenótipo , Irmãos , Criança , Coloboma/diagnóstico , Coloboma/genética , Corpo Caloso/patologia , Facies , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Masculino , Convulsões/diagnóstico , Convulsões/genética , Síndrome
19.
Mol Genet Genomic Med ; 2(2): 176-85, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24689081

RESUMO

Cerebral cavernous malformations (CCM) are prevalent vascular malformations occurring in familial autosomal dominantly inherited or isolated forms. Once CCM are diagnosed by magnetic resonance imaging, the indication for genetic testing requires either a positive family history of cavernous lesions or clinical symptoms such as chronic headaches, epilepsy, neurological deficits, and hemorrhagic stroke or the occurrence of multiple lesions in an isolated case. Following these inclusion criteria, the mutation detection rates in a consecutive series of 105 probands were 87% for familial and 57% for isolated cases. Thirty-one novel mutations were identified with a slight shift towards proportionally more CCM3 mutations carriers than previously published (CCM1: 60%, CCM2: 18%, CCM3: 22%). In-frame deletions and exonic missense variants requiring functional analyses to establish their pathogenicity were rare: An in-frame deletion within the C-terminal FERM domain of CCM1 resulted in decreased protein expression and impaired binding to the transmembrane protein heart of glass (HEG1). Notably, 20% of index cases carrying a CCM mutation were below age 10 and 33% below age 18 when referred for genetic testing. Since fulminant disease courses during the first years of life were observed in CCM1 and CCM3 mutation carriers, predictive testing of minor siblings became an issue.

20.
Epilepsia ; 55(4): e25-9, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24579881

RESUMO

Epilepsy is a phenotypically and genetically highly heterogeneous disorder with >200 genes linked to inherited forms of the disease. To identify the underlying genetic cause in a patient with intractable seizures, optic atrophy, severe intellectual disability (ID), brain abnormalities, and muscular hypotonia, we performed exome sequencing in a 5-year-old girl and her unaffected parents. In the patient, we detected a novel, de novo missense mutation in the SCN2A (c.5645G>T; p.R1882L) gene encoding the αII -subunit of the voltage-gated sodium channel Nav 1.2. A literature review revealed 33 different SCN2A mutations in 14 families with benign forms of epilepsy and in 21 cases with severe phenotypes. Although almost all benign mutations were inherited, the majority of severe mutations occurred de novo. Of interest, de novo SCN2A mutations have also been reported in five patients without seizures but with ID (n = 3) and/or autism (n = 3). In the present study, we successfully used exome sequencing to detect a de novo mutation in a genetically heterogeneous disorder with epilepsy and ID. Using this approach, we expand the phenotypic spectrum of SCN2A mutations. Our own and literature data indicate that SCN2A-linked severe phenotypes are more likely to be caused by de novo mutations. A PowerPoint slide summarizing this article is available for download in the Supporting Information section here.


Assuntos
Exoma/genética , Deficiência Intelectual/genética , Hipotonia Muscular/genética , Canal de Sódio Disparado por Voltagem NAV1.2/genética , Atrofia Óptica/genética , Convulsões/genética , Encéfalo/anormalidades , Pré-Escolar , Feminino , Humanos , Deficiência Intelectual/complicações , Deficiência Intelectual/diagnóstico , Hipotonia Muscular/complicações , Hipotonia Muscular/diagnóstico , Mutação de Sentido Incorreto/genética , Atrofia Óptica/complicações , Atrofia Óptica/diagnóstico , Fenótipo , Convulsões/complicações , Convulsões/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...